Effect of thermal-oxidative and mechanical degradation of recycled LDPE on foaming

Author:

Zou Huanyu1,Lu Jiawei1,Zhou Pengfei1,Liu Tao1ORCID

Affiliation:

1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China

Abstract

In this study, we investigated the effect of recycling process on the molecular structure, viscoelasticity and foaming behavior of low density polyethylene (LDPE). A series of LDPE samples with different recycling process was prepared by multiple extrusion using a twin-screw extruder. The molecular weight distribution (MWD) was characterized by gel permeation chromatography (GPC). Wider MWD indicated the generation of higher molecular weight products. Small-amplitude oscillation rheology showed reduced loss factors, indicating that the chain entanglement was more difficult to relax. Moreover, nonlinear viscoelasticity was investigated using elongational rheology and molecular stress function (MSF) model. The results showed a steeper strain hardening exhibited in recycled LDPE. The correlated parameter β in the MSF model indicated that the recycling did not significantly change the branches regularity in LDPE, while the increasing [Formula: see text], the other correlated parameter, indicated that the chain entanglement was enhanced, which was corresponded to the improvement of high molecular weight component. The foaming results revealed that the recycled LDPE had finer cellular structure and higher nucleation density. Moreover, despite adding PP and active CaCO3 to simulate the impurities, the foamability loss of these mixed samples was well restricted and still valuable. Recycled LDPE is instead better than its corresponding virgin one in foaming performance, exhibiting the application potential for further developments.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3