MicroRNA-17-5p, a novel endothelial cell modulator, controls vascular re-endothelialization and neointimal lesion formation

Author:

Liu Xiaopei1,Chen Jing1ORCID,Liu Gen1,Zhang Bofang1,Jin Xing1,Wang Yun1

Affiliation:

1. Department of Cardiology, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China

Abstract

Background The functions of miR-17-5p in tumorigenesis have been explored. However, their functionalities in arterial endothelial cells (ECs) have not been investigated. Besides, the issue of vascular remodelling is barely addressed. Objectives The study aimed to determine the effect of overexpression or inhibition of miR-17-5p on arterial endothelial cells’ (ECs) function and vascular remodelling in vitro and the rat carotid arteries model. Methods Quantitative RT-PCR analysis was performed to examine the expression of miR-17-5p. Then, gain-of-function and loss-of-function approaches were employed to investigate the functional roles of miR-17-5p in cultured human coronary artery endothelial cells (HCAECs); further, TargetScan software analysis and luciferase reporter activity assay were performed to investigate the potential mechanism. Lastly, the results of the cell segment were verified in a rat carotid artery balloon injury model by Western blot analysis, measurement of the vascular cGMP level and plasma 8-iso-prostaglandin F2 (8-iso-PGF2) testing. Moreover, morphometric analysis was implemented to detect the re-endothelialization and neointimal formation in rat carotid artery after balloon injury. Results This study firstly found that miR-17-5p expression was upregulated in the injured vascular walls and highly expressive in ECs; overexpression of miR-17-5p inhibited HCAECs’ proliferation and migration, whereas miR-17-5p knockdown strengthened its proliferative and migratory roles, influenced inflammatory response, through regulating VEGRA and VEGFR2. It was found that miR-17-5p bind to VEGFA and VEGFR2 at the 3′UTR. Next, downregulation of miR-17-5p promotes re-endothelialization, and attenuates neointimal formation as measured by the I/M ratio (0.63±0.05 vs 1.45±0.06, antagomiR-17-5p vs. Lenti-NC, p < 0.05). In addition, the functional recovery of the endothelium was also accelerated by miR-17-5p knockdown. Conclusion Our study suggests that miR-17-5p is a feasible strategy for the selective modulation of endothelialization and vascular remodelling through regulating VEGFA and VEGFR2.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3