Affiliation:
1. Department of Cardiology, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
Abstract
Background The functions of miR-17-5p in tumorigenesis have been explored. However, their functionalities in arterial endothelial cells (ECs) have not been investigated. Besides, the issue of vascular remodelling is barely addressed. Objectives The study aimed to determine the effect of overexpression or inhibition of miR-17-5p on arterial endothelial cells’ (ECs) function and vascular remodelling in vitro and the rat carotid arteries model. Methods Quantitative RT-PCR analysis was performed to examine the expression of miR-17-5p. Then, gain-of-function and loss-of-function approaches were employed to investigate the functional roles of miR-17-5p in cultured human coronary artery endothelial cells (HCAECs); further, TargetScan software analysis and luciferase reporter activity assay were performed to investigate the potential mechanism. Lastly, the results of the cell segment were verified in a rat carotid artery balloon injury model by Western blot analysis, measurement of the vascular cGMP level and plasma 8-iso-prostaglandin F2 (8-iso-PGF2) testing. Moreover, morphometric analysis was implemented to detect the re-endothelialization and neointimal formation in rat carotid artery after balloon injury. Results This study firstly found that miR-17-5p expression was upregulated in the injured vascular walls and highly expressive in ECs; overexpression of miR-17-5p inhibited HCAECs’ proliferation and migration, whereas miR-17-5p knockdown strengthened its proliferative and migratory roles, influenced inflammatory response, through regulating VEGRA and VEGFR2. It was found that miR-17-5p bind to VEGFA and VEGFR2 at the 3′UTR. Next, downregulation of miR-17-5p promotes re-endothelialization, and attenuates neointimal formation as measured by the I/M ratio (0.63±0.05 vs 1.45±0.06, antagomiR-17-5p vs. Lenti-NC, p < 0.05). In addition, the functional recovery of the endothelium was also accelerated by miR-17-5p knockdown. Conclusion Our study suggests that miR-17-5p is a feasible strategy for the selective modulation of endothelialization and vascular remodelling through regulating VEGFA and VEGFR2.
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery