The relationship between directional components of dynamic response and maximum principal strain for impacts to an American football helmet

Author:

Taylor Karen1ORCID,Hoshizaki T Blaine1,Post Andrew1ORCID,Gilchrist Michael D12ORCID

Affiliation:

1. Neurotrauma Impact Science Laboratory, University of Ottawa, Ottawa, ON, Canada

2. School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland

Abstract

Impact parameters used to design the American football helmet and the parameters associated with mechanisms of concussive injury are not consistent. Head impacts resulting in concussive injury in football are characterized as events creating rotational motion of the head that generate brain tissue strain. The extent of tissue strain influences the resulting severity of injury. Helmet technology aimed to decrease brain tissue strain by reducing the extent of brain motion could help reduce injury risk. Current helmet performance and evaluation measures, such as peak resultant of linear and rotational acceleration, do not fully define directional brain motion and therefore cannot provide sufficient information for this type of improvement. This study was conducted to determine whether coordinate components (X, Y, and Z) of linear and rotational acceleration would correlate with maximum principal strain, a common measure of brain injury risk. Coordinate components define directional motion of the head and offer a specific design parameter more easily reduced using engineered structures than peak resultant acceleration. In addition to coordinate components, this study introduces the dominant component, defined as the coordinate component with the highest contribution to the resultant acceleration, for additional evaluation. The results show that the relationship between the X, Y, and Z coordinate components of acceleration and maximum principal strain is location- and direction-dependent. The study indicates a strong relationship between the peak resultant and dominant components of acceleration to maximum principal strain. Because the dominant component of acceleration accounts for direction and location, identifying the relationship between dominant acceleration and maximum principal strain demonstrates the potential use of this metric to improve future helmet innovation aimed at reducing tissue strain.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3