Predictive mathematical model of time saved on descents in road cycling achieved through reduction in aerodynamic drag area

Author:

Drory Ami12,Yanagisawa Masahiro3

Affiliation:

1. College of Engineering and Computer Science, Australian National University, Australia

2. Movement Science, Australian Institute of Sport, Australia

3. Australian Defence Force Academy, Australia

Abstract

This paper presents empirically-based simulation results of descent time to completion in road cycling. A mathematical model is formulated to predict time saved on road cycling descents where a cyclist’s position is static through manipulation of aerodynamic drag area, system parameters and initial conditions. Road cyclists often adopt drastic static riding positions on long descents in order to minimize aerodynamic drag and optimize performance, measured as race time to completion. In those riding positions bicycle control is compromised and the risk of fall and injury increases. The aims of this study were to empirically determine whether there is a difference in aerodynamic drag area associated with the ‘Top-Tube’ descending riding position compared to ‘Normal’ descending riding position, and to investigate the effect of the difference on time to completion of road descents. Two elite male Australian time-trial cyclists were tested in an open jet wind tunnel. Drag force was measured using a force platform and a custom air bearing drag measurement system at 50 Hz at wind velocity of 15.6 m/s. Athletes were tested in their ‘Normal’ descending position and in the ‘Top-Tube’ position. Based on Newtonian–Lagrangian equations of motion of the cyclist–bicycle system, an analogue mathematical model as a non-linear Riccati ordinary differential equation was developed to enable prediction of velocity and time to completion of a road cycling course descent of known length and gradient as measures of performance for an athlete of known mass and empirically determined drag area in a descending position. Previously, proposed models of cycling performance have been based on physiological, anthropometric, and mechanical power output. No general closed-form time-to-completion mathematical model for cycling was found in the literature. Analytical solutions allow for a concise investigation of a dynamical system model behaviour that is not as readily available with a numerical solution. Wind tunnel testing showed up to 25% reduction in drag area for changes to cyclists riding position from their ‘Normal’ to the ‘Top-Tube’ dropped descending position. The analytical solution to the nonlinear Riccati differential equation showed that large time savings as a result of reduction of drag area can be made on road cycling race descents. In the example scenario simulated here, 29.2 s may be saved on a 5 km descent of 10% gradient with 25% reduction in aerodynamic drag area (CdA). The ‘Top-Tube’ riding position is associated with a large reduction in aerodynamic drag area in road descents compared to conventional descending riding position. Our model enables the prediction of time to completion on descents. This may assist cyclists to assess the trade-off between undertaking increased risk associated with drastic rider descending position and the potential for improved performance in the context of race tactics and strategy.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating the projected frontal surface area of cyclists from images using a variational framework and statistical shape and appearance models;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2017-05-10

2. Analysis of free-surface effects on swimming by the application of the computational fluid dynamics method;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2016-08-02

3. Proposal of a coast-down model including speed-dependent coefficients for the retarding forces;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2016-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3