Comparison of dynamic response and maximum principal strain of diagnosed concussion in professional men’s rugby league

Author:

Ignacy Talia1,Post Andrew12ORCID,Gardner Andrew J34,Gilchrist Michael D2ORCID,Hoshizaki Thomas Blaine1

Affiliation:

1. School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada

2. Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland

3. Priority Research Centre for Stroke and Brain Injury, School of Medicine & Public Health, University of Newcastle, Callaghan, NSW, Australia

4. Sports Concussion Program, Hunter New England Local Health District, John Hunter Hospital, New Lambton Heights, NSW, Australia

Abstract

Rugby league has been identified as a contact sport with a high incidence of concussion. Research has been conducted to describe incidence and mechanisms of concussion in rugby league, however the risks associated with injury events (shoulder, hip, head to head) are unknown. The purpose of this study was to describe the common injury events leading to concussion in the National Rugby League and compare these events through analysis of dynamic response and brain tissue deformation. Twenty-seven impact videos of concussive injuries were physically reconstructed to obtain linear and rotational accelerations of the head. Dynamic response data were input into the University College Dublin Brain Trauma Model (UCDBTM) to calculate maximum principal strain (MPS). Head-to-head events produced a short duration event with an average peak linear and peak rotational acceleration of 205 g and 15,890 rad/s2, respectively, which were significantly greater than the longer duration hip-to-head (24.7 g and 2650 rad/s2) and shoulder-to-head (24.2 g and 3280 rad/s2) impacts. There were no differences in MPS between events. These results suggest that risk of strain to the brain may be produced by short and long duration acceleration events. Thus, both of these accelerations need to be accounted for in the development of improved head and body protection in rugby. In addition, this data demonstrates that these events cause a risk of concussion requiring efforts to limit or modify how energy is transferred to the head.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3