Assessment of accelerometer-derived data in the context of seat height changes in cycling and the impact on running in triathlon

Author:

Evans Stuart A1ORCID,James Daniel A1,Rowlands David2,Lee James B1

Affiliation:

1. SABEL Labs, College of Health and Human Science, Charles Darwin University, Darwin, Australia

2. School of Engineering and Built Environment, Griffith University, Nathan, QLD, Australia

Abstract

Triathlon has been an Olympic sport since the 2000 Sydney Olympics and has developed rapidly, leading to variations in race categories. Although running after cycling necessitates a postural change from a non-weight-bearing activity to a weight bearing one, no study has quantified the magnitude of trunk acceleration during cycling in different seat positions and the consequential effect on running. Therefore, this study was conducted to evaluate the effectiveness of a triaxial accelerometer to determine acceleration magnitudes of the trunk in a 20 km outdoor cycling event in two seat positions that were immediately followed by a 5 km overground run. Interpretation of data was evaluated based on cadence changes while triathletes cycled in an aerodynamic position in two seat positions. Running data was evaluated based on sinusoidal curves and foot strike peaks. The evaluation of accelerometer derived data within a characteristic overground setting suggests that cycling in an adjusted seat position significantly reduced trunk acceleration in both longitudinal and mediolateral directions with large effects ( p < 0.0001, d > 0.9). A significant and large effect was found in both longitudinal and anteroposterior trunk acceleration in post-cycle running between seat positions ( d > 0.9, p < 0.0001). In the longitudinal direction, a significant reduction in trunk acceleration occurred when running after the seat was adjusted with participants completing the 5 km run faster (21:55 ± 3:17 min compared to 22:05 ± 2:53 min). The results suggest that when the seat position is adjusted based on individual anthropometrics, overall trunk acceleration magnitude is reduced in both cycling and running. Accessible and practical sensor technology could be beneficial for postural considerations in triathlons.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3