Variable inertia training: Optimization of explosive-power exercises with robotic-resistance strength machines

Author:

Biscarini Andrea1,Contemori Samuele1

Affiliation:

1. Department of Experimental Medicine, University of Perugia, Perugia, Italy

Abstract

Strength training machines with computer-adjustable resistance mechanisms can simulate external resistance of different kinds (i.e. gravitational, elastic, and viscous) and magnitude R, and different levels of inertial force (the product of the resistance mass m and its acceleration). Notably, the simulated levels of R and m can be freely adjusted, during movement, independently of each other. In this study, the authors have performed a numerical simulation of exercises for explosive power to analyze the kinematic and kinetic effects of resistances that combine different levels of R and m (i.e. different levels of external resistance and inertial force). A progressive increase in m gradually enhances the peak user’s force and reduces the peak acceleration at all resistances R, enhances and shifts later in time the peak power at low resistances, and reduces the mean power at high resistances. The mass m also induces a rate of force development at the beginning of movement in a time frame which becomes progressively longer with higher values of m. Complete lack of mass m would be needed in the final phase of the movement to attain an effective training stimulus for high-velocity strength. In light of this evidence, the authors have devised a new training modality for explosive power (the “Variable Inertia Training”) with strength machines that use a motor and an electronic management system to simulate mass m variations in response to the kinematic parameters (position, velocity, and acceleration) of movement. This training modality can be designed to closely reproduce the kinematic and kinetic patterns occurring during ballistic or explosive sport movements, such as those occurring during throwing, hitting, rowing, and pushing activities. In addition, it may potentially enable the integrated development of the main neuromuscular components (force, rate of force development, and high-velocity strength) that contribute to the expression of explosive power for sports performance.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3