Comparison of ground reaction force and contact time during various-direction lunges between badminton shoes without and with a lateral forefoot wedge sole

Author:

Chen Wei-Han1ORCID,Chen Chi-Hsien2,Yang Wen-Wen3,Lin Gin-Yun2,Hsu Wei-Chun4,Shiang Tzyy-Yuang5,Liu Chiang26ORCID

Affiliation:

1. Department of Physical Education and Kinesiology, National Dong Hwa University, Hualien, Taiwan

2. Graduate Institute of Sports Equipment Technology, University of Taipei, Taipei, Taiwan

3. Department of Sports Medicine, China Medical University, Taichung, Taipei, Taiwan

4. Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

5. Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan

6. Center for Sport Science and Technology, National Tsing Hua University, Hsinchu, Taipei, Taiwan

Abstract

This study compared the ground reaction force (GRF), GRF ratio, and contact time between badminton shoes without and with a lateral forefoot wedge sole during lunges in three directions. Fifteen collegiate athletes wore forefoot wedge shoes (5° incline) and control shoes without a lateral forefoot wedge sole (in random order) and performed three typical badminton lunge movements (forward, lateral, and backward directions). A total of nine GRF, GRF ratio, and contact time parameters were analyzed. A paired t test was performed to assess the differences between two shoes. The significance level was set at p < 0.0056 (0.05/9) based on Bonferroni correction to avoid chances of type 1 errors. In the forward lunge, the forefoot wedge shoes resulted in a significantly higher average vertical ground reaction force (GRFv, 3.9%), average horizontal GRF (GRFh, 7.8%) in the braking phase and higher average GRFh (3.9%) in the propulsion phase than the control shoes. In the lateral lunge, the forefoot wedge shoes resulted in a significantly shorter total contact time (−4.6%) than the control shoes in the backward lunge, the forefoot wedge shoes resulted in a significantly higher GRFh to GRFv ratio (6.4%) in the braking phase compared with the control shoes. Thus, shoes with a lateral forefoot wedge sole can effectively enhance mechanical performance in direction changes during forward and backward badminton lunges, and shorter the contact time during lateral badminton lunges. Shoes with a lateral forefoot wedge sole can be considered when designing athletic footwear.

Publisher

SAGE Publications

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3