Curling stone tracking based on an enhanced mean-shift algorithm using optimal feature vector

Author:

Kim Junghu1ORCID,Han Youngjoon2

Affiliation:

1. Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, KR

2. Department of Smart System Software, Soongsil University, Seoul, KR

Abstract

Computer vision technology can automatically detect and recognize objects on the ground or on a court, such as balls, players, and lines, using camera sensors. These are non-contact sensors, which do not interfere with an athlete’s movement. The game elements detected by such measuring equipment can be used for game analysis, judgment, context recognition, and visualization. This paper proposes a method to automatically track the position of stones in curling sport images using computer vision technology. The authors extract the optimal feature vector of the mean-shift tracking algorithm by obtaining the optimal histogram from the color and edge information of the curling stone, thereby adaptively controlling the number of bins in the histogram. After evaluating the performance of the curling stone tracking method among 1424 image frames from curling sport videos, the authors found that the proposed method improved detection rate (overlap threshold = 0.9) by 14.85% compared to the general mean-shift method.

Funder

national research foundation of korea

Publisher

SAGE Publications

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3