Pattern recognition neural classifier for fall detection in rock climbing

Author:

Bonfitto Angelo1ORCID,Tonoli Andrea1,Feraco Stefano1ORCID,Zenerino Enrico Cesare1,Galluzzi Renato1ORCID

Affiliation:

1. Mechatronics Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract

From an athlete’s perspective, the identification of falls during rock climbing is of major importance. It constitutes a solid performance indicator, but more importantly, it could be used to trigger an instantaneous alarm to rescue teams, thus reducing the negative health consequences for the climber. In this context, an artificial neural network–based technique for fall detection during rock climbing is presented in this study. The output of this tool could be used for safety and performance monitoring purposes. The proposed method exploits a neural network for binary pattern recognition. This network is fed with a set of features extracted in real time from the acceleration and altitude signals acquired by means of a wearable device. The classifier is trained and validated with experimental datasets recorded during real climbing sessions of eight athletes through different route grades and conditions. This article illustrates the architecture of the proposed algorithm, feature extraction process, and evaluation of its accuracy. In addition, an analysis of the severity level of the detected falls is conducted. The method is able to identify real fall events with a high success rate, while yielding very few false positive indications of a fall.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3