A three-dimensional finite element model of a 6-year-old child for simulating brain response from physical reconstructions of head impacts

Author:

Koncan David1ORCID,Gilchrist Michael2,Vassilyadi Michael3,Hoshizaki Thomas Blaine1

Affiliation:

1. School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada

2. School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland

3. Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada

Abstract

Despite young children being a high-risk population for sustaining concussive injuries in sport, few studies have investigated head impact biomechanics from sporting impacts using physical models and finite element models of the brain. Physical reconstructions are often used in concussive research, using the recorded kinematics to load finite element models of the brain to obtain better information of real-life head injuries. For children, scaling adult models is a common method used to study the youth population. However, this method does not capture age-dependent material properties or the unique geometry of the developing brain. To address these deficiencies, a novel three-dimensional finite element model of a 6-year-old child was developed and compared to a scaled adult model, for use with physical reconstructions. With the lack of intracranial validation data for the youth population, adult cadaveric data for brain motion was used for comparison. The new brain model showed unique responses in motion and strain compared to the scaled adult model. Using the normalized integral square error method, the new model was classified to have ‘fair’ to ‘excellent’ biofidelity. The new model is proposed as more appropriate for conducting concussion and brain injury research in young children near 6 years of age.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3