IMU gyroscopes are a valid alternative to 3D optical motion capture system for angular kinematics analysis in tennis

Author:

Delgado-García Gabriel12ORCID,Vanrenterghem Jos3,Ruiz-Malagón Emilio J12,Molina-García Pablo12,Courel-Ibáñez Javier4ORCID,Soto-Hermoso Víctor Manuel12

Affiliation:

1. Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of Granada, Granada, Spain

2. Sport and Health Research Institute (iMUDS), University of Granada, Spain

3. Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, University of Leuven, Belgium

4. Department of Physical Activity and Sport, Faculty of Sport Sciences, University of Murcia, San Javier, Murcia, Spain

Abstract

Whereas 3D optical motion capture (OMC) systems are considered the gold standard for kinematic assessment in sport science, they present some drawbacks that limit its use in the field. Inertial measurement units (IMUs) incorporating gyroscopes have been considered as a more practical alternative. Thus, the aim of the study was to evaluate the level of agreement for angular velocity between IMU gyroscopes and an OMC system for varying tennis strokes and intensities. In total, 240 signals of angular velocity from different body segments and types of strokes (forehand, backhand and service) were recorded from four players (two competition players and two beginners). The angular velocity of the IMU gyroscopes was compared to the angular velocity from the OMC system. Level of agreement was evaluated by correlation coefficients, magnitudes of errors in absolute and relative values and Bland-Altman plots. Differences between both systems were highly consistent within players’ skill (i.e. along the broad range of velocities) and axes ( x, y, z). Correlations ranged from 0.951 to 0.993, indicating a very strong relationship and concordance. The magnitude of the differences ranged from 4.4 to 35.4 deg·s−1. The difference relative to the maximum angular velocity achieved was less than 5.0%. The study concluded that IMUs and OMC systems showed comparable values. Thus, IMUs seem to be a valid alternative to detect meaningful differences in angular velocity during tennis groundstrokes in field-based experimentation.

Funder

Ministerio de Educación, Cultura y Deporte

Publisher

SAGE Publications

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3