Female breast motion during exercise based on the Lagrange method

Author:

Sun Guangwu12ORCID,Liu Shiyuan2,Chen Xiaona2ORCID,Xie Hong2

Affiliation:

1. School of Mechanical and Electrical Engineering, Hainan Vocational University of Science and Technology, Haikou, Hainan Province, P.R. China

2. School of Textiles and Fashion, Textile Industrial Key Laboratory of Sports Ergonomics and Functional Clothing, Shanghai University of Engineering Science, Shanghai, P.R. China

Abstract

Breasts can move considerably when women are active, which can sometimes be uncomfortable. Many studies have measured breast movement by a camera recording the movement of multiple markers attached to the breast. However, an excessive number of markers may hinder the subject’s movement. Additionally, camera images cannot readily distinguish closely arranged LED markers owing to interference of light from the markers. Therefore, it is necessary to develop a numerical model to minimize experimental limitations. The present numerical model was developed based on the Lagrange method to enable simultaneous prediction of the movement of multiple positions on the breast during successional vertical jumps. The modeling results revealed the nipple demonstrated a larger displacement (average displacement ≈ 52.73 mm) than other marker positions during successive jumps. The breast top showed lower displacement (average displacement ≈ 46.18 mm) than other marker positions. The model also revealed the force variation on the breast during a jump. The whole breast movement was dependent on a combination of multiple forces. The viscoelastic force provided resistance to breast deformation. The restoring force drove the breast upward, while the gravity force pulled it down. The model synchronously calculated the displacements of more than 30 positions on the breast, then exported the vertical movement path of the whole breast. The model can only predict the vertical displacement and force; it still needs to be improved in other directions.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3