Are golf courses a source or sink of atmospheric carbon dioxide? A modelling approach

Author:

Bartlett M D1,James I T1

Affiliation:

1. Centre for Sports Surface Technology, Cranfield University, Cranfield, UK

Abstract

Sports facilities have been shown to have a positive impact on local biodiversity, quality of life, and the economy. Their impact on global carbon balances is less clearly understood. Increased concentrations of atmospheric carbon dioxide (CO2) have been linked with global climate change. Currently there is a debate as to whether amenity turf is a net source or a net sink for atmospheric CO2. The turf grass of a natural sports pitch will sequester carbon through photosynthesis, but there are numerous emission sources associated with the management of turf which release CO2 into the atmosphere. These include the engines used to power mechanized operations such as mowing and spraying, the application of agrochemicals, including fertilizers, and the disposal of waste. In order to determine whether a real-world example of a sports facility was a source or sink of carbon a mechanistic mass balance model was developed. Analysis indicated that the areas of the golf course that received the most management attention were a net source of carbon emissions. The magnitude of these releases was significantly different on an equal-area basis ( p < 0.01). The net carbon budget for turf grass areas across the whole golf course accounting for the sequestration by the turfgrass was −33.01 MgC/year. The mature trees that formed an integral part of the landscape of the modelled course had a significant impact on the net carbon balance, resulting in overall net sequestration of −177.3 MgC/year for the whole golf course, equivalent to −1.93 MgC/ha/year. The variability in the size, shape, and vegetation composition of different golf courses has a considerable impact on their net carbon balance, and the resultant environmental impact of sports facilities must be assessed on an individual basis.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3