Real time estimation of vertical jump height with a markerless motion capture smartphone app: A proof-of-concept case study

Author:

Balsalobre-Fernández Carlos1ORCID

Affiliation:

1. Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain

Abstract

The aim of the present proof-of-concept case study was to explore the potential of a novel technology using artificial intelligence techniques to measure countermovement jump height (CMJ-h) in real time. Four hundred jumps were recorded from a single male participant over a period of 24 consecutive weeks, while CMJ-h was simultaneously registered with a force plate and a newly developed version of the My Jump Lab iOS app that used computer vision to measure CMJ-h in real time with the iPhone camera. A very high correlation ( r = 0.971, 95% CI = 0.963–0.975) and large agreement (ICC = 0.969, 95% CI = 0.963–0.975) were observed between measurements. Statistically significant, large differences were observed between instruments (mean absolute difference = 0.06 ± 0.01 m, d = 4.4, p < 0.001). However, when using the regression equation between devices to correct the app’s raw data ( R2 = 0.94, y  =  1.0004x  –  0.0641), non-significant, trivial differences were observed (mean absolute difference = 0.01 ± 0.008 m, d = 0.1, p = 1.000). Collectively, the findings of this study highlight the potential of this novel artificial intelligence app for the measurement of CMJ-h in real time. However, considering the nature of this investigation, more research is needed to confirm the results observed in a wider population.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The concurrent validity and reliability of the My Jump Lab smartphone app for the real-time measurement of vertical jump performance;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2024-04-11

2. Digitale Technologien zur Förderung der Bildung im und durch den Sport;Digitalisierung und Innovation im Sport und in der Sportwissenschaft;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3