A multidisciplinary approach to the engineering of footwear cushioning: A practical example of gym training shoes

Author:

Morio Cédric YM1ORCID,Bouten Laura1,Duraffourg Simon1,Delattre Nicolas1

Affiliation:

1. Decathlon SportsLab, Department of Movement Sciences, Decathlon SE, France

Abstract

According to sports goers, one of the most important features of gym training shoes is their cushioning properties. The optimal amount of cushioning is, however, complex to define. In the present paper, a multi-disciplinary approach was proposed to investigate and determine the optimal perceived midsole cushioning for gym training shoes. Firstly, impact tests were performed to characterise a wide range of shoes representing the gym training shoe market. Trained sensory panel method and mechanical testing were combined to determine the relationship between the perception of cushioning and the shoe’s mechanical properties. Secondly, the preferred cushioning perception was assessed. Then, numerous midsole configurations were tested using finite element method (FEM) to determine the combinations with the best cushioning properties in order to reduce the number of physical prototypes. To assess the best configuration estimated by the numerical model, a wear test was performed as a final validation. From this approach, relationship between the mechanical properties of the midsole and perception of cushioning was found, and an optimal perceived cushioning was identified. Moreover, through FEM numerical simulations, a great number of midsole configurations and designs were tested without making any actual prototypes. Prototype shoes were based on the best numerical solution. The final wear test confirmed that the prototype gym training shoes achieved the preferred perception of cushioning. The present methodology proposes a framework, which empowers the use of athlete’s and exerciser’s perception in shoe design.

Publisher

SAGE Publications

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3