Influence of air rifle pellet geometry on aerodynamic drag

Author:

Ladommatos Nicos1ORCID

Affiliation:

1. Department of Mechanical Engineering, University College London (UCL), London, UK

Abstract

Air rifles and air pistols find widespread use in formal and recreational sports events. Despite their widespread use in sport, they have rarely been studied scientifically. The influence of air rifle pellet geometry on aerodynamic drag was investigated experimentally and theoretically at Mach number of 0.58 (approximately 200 m/s) and Reynolds number of 54,000 using a low-turbulence open wind tunnel. Measurements were made of surface pressure and aerodynamic drag distribution for five pellets having different geometries. Pellet overall drag was also measured with a load cell system. Theoretical analysis based on two-dimensional potential flow theory was used to study the relationship between nose shape and drag. Results indicate that the overall drag of non-spherical pellets was dominated by the drag on their front face, with the face contributing approximately 65% of the overall pellet drag, while base drag contributed almost all of the remaining 35%. The net drag contribution of the pellet side-slopes was close to zero. The geometry of the front face had a weak influence on the drag acting on the pellet base. This influence was exercised through the behaviour of the free shear layer separating from the pellet head rim. It was apparent that the presence of the tail in a dome-head pellet enabled flow reattachment and a rise in base pressure, which reduced the base drag. In contrast, at Re ~54,000, flow reattachment on the rear surface of the spherical pellet was not possible. For this reason, its base drag was higher than that for the dome-head pellet. Flat-, cone-, and cavity-head pellets had higher overall drag coefficient values than a spherical pellet. The higher overall coefficients were due to the higher face drag than the spherical pellet, which was not compensated sufficiently by their lower base drag.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3