Design and development of a feedback system for automatic treadmill speed adaptation

Author:

Fruet Damiano1ORCID,Zignoli Andrea1ORCID,Modena Roberto23,Pellegrini Barbara24,Gastaldi Laura5ORCID,Bortolan Lorenzo24

Affiliation:

1. Department of Industrial Engineering, University of Trento, Trento, TN, Italy

2. CeRiSM, Rovereto, TN, Italy

3. Molde University College, Molde, Norway

4. Department of Engineering for Innovation Medicine, Università di Verona, Verona, VR, Italy

5. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, TO, Italy

Abstract

Treadmills with automatic speed adjustment offer a unique advantage: they can mimic outdoor conditions for specific training or testing protocols. This versatility makes them highly applicable in both sports and rehabilitation settings. This study presents a novel framework based on a feedback control loop system, conceived to control a treadmill belt speed using a non-invasive and low-cost sensor (Microsoft Kinect) to detect the users’ position and avoid object obstruction issues. The speed of the treadmill belt is regulated according to the user’s speed, by means of a proportional-integrative-derivative (PID) controller and a parabolic gain function. By tuning the gain function parameters, the user can customize the response of the treadmill. Position data collected during exercise using the Microsoft Kinect sensor was compared with that collected with a stereophotogrammetric motion capture system, showing promising results in terms of accuracy in position assessment. The comparison highlighted a 0.9 degree of correlation between the two systems during the running and cross-country indoor skiing tests performed. In addition, upon considering the relationship between the differences and averages of the two measures, no systematic bias was identified. The system proved to be functional for running and cross-country skiing, and it can therefore re-create similar typical characteristics of outdoor environments (e.g., speed and slope) thanks to the non-invasive user’s position detection and the customizable gain function.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3