A wind-tunnel case study: Increasing road cycling velocity by adopting an aerodynamically improved sprint position

Author:

Crouch Timothy1ORCID,Menaspà Paolo2ORCID,Barry Nathan1,Brown Nicholas34,Thompson Mark C1,Burton David1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia

2. Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia

3. Australian Institute of Sport, Canberra, ACT, Australia

4. Faculty of Health, University of Canberra, Canberra, ACT, Australia

Abstract

The main aim of this study was to evaluate the potential to reduce the aerodynamic drag by studying road sprint cyclists’ positions. A male and a female professional road cyclist participated in this wind-tunnel study. Aerodynamic drag measurements are presented for a total of five out-of-seat sprinting positions for each of the athletes under representative competition conditions. The largest reduction in aerodynamic drag measured for each athlete relative to their standard sprinting positions varied between 17% and 27%. The majority of this reduction in aerodynamic drag could be accounted for by changes in the athlete’s projected frontal area. The largest variation in repeat drag coefficient area measurements of out-of-seat sprint positions was 5%, significantly higher than the typical <0.5% observed for repeated testing of time-trial cycling positions. The majority of variation in repeated drag coefficient area measurements was attributed to reproducibility of position and sampling errors associated with time-averaged force measurements of large fluctuating forces.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The aerodynamic assessment of tandem cyclists in preparation for the 2021 Paralympic Games: A case study;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2022-05-18

2. The Influence of the Inter-Relationship of Leg Position and Riding Posture on Cycling Aerodynamics;Fluids;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3