Transfer learning for topic labeling: Analysis of the UK House of Commons speeches 1935–2014

Author:

Béchara Hannah1,Herzog Alexander2,Jankin Slava1ORCID,John Peter3ORCID

Affiliation:

1. Hertie School of Governance, Germany

2. Clemson University, USA

3. King’s College London, UK

Abstract

Topic models are widely used in natural language processing, allowing researchers to estimate the underlying themes in a collection of documents. Most topic models require the additional step of attaching meaningful labels to estimated topics, a process that is not scalable, suffers from human bias, and is difficult to replicate. We present a transfer topic labeling method that seeks to remedy these problems, using domain-specific codebooks as the knowledge base to automatically label estimated topics. We demonstrate our approach with a large-scale topic model analysis of the complete corpus of UK House of Commons speeches from 1935 to 2014, using the coding instructions of the Comparative Agendas Project to label topics. We evaluated our results using human expert coding and compared our approach with more current state-of-the-art neural methods. Our approach was simple to implement, compared favorably to expert judgments, and outperformed the neural networks model for a majority of the topics we estimated.

Funder

university college london

Publisher

SAGE Publications

Subject

Political Science and International Relations,Public Administration,Sociology and Political Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topic Modelling: Going beyond Token Outputs;Big Data and Cognitive Computing;2024-04-25

2. Energy agendas: A longitudinal analysis of Finnish parliamentary debates;Scandinavian Political Studies;2024-02-21

3. Intersectional Representation: Theory and Practice;Comparative Studies of Political Agendas;2024

4. Conclusions;Comparative Studies of Political Agendas;2024

5. If You Have Choices, Why Not Choose (and Share) All of Them? A Multiverse Approach to Understanding News Engagement on Social Media;Digital Journalism;2022-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3