Highlighting the rules between diagnosis types and laboratory diagnostic tests for patients of an emergency department: Use of association rule mining

Author:

Sarıyer Görkem1,Öcal Taşar Ceren1ORCID

Affiliation:

1. Yaşar University, Turkey

Abstract

Diagnostic tests are widely used in emergency departments to make detailed investigations on diagnosis and treat patients correctly. However, since these tests are expensive and time-consuming, ordering correct tests for patients is crucial for efficient use of hospital resources. Thus, understanding the relation between diagnosis and diagnostic test requirement becomes an important issue in emergency departments. Association rule mining was used to extract hidden patterns and relation between diagnosis and diagnostic test requirement in real-life medical data received from an emergency department. Apriori was used as an association rule mining algorithm. Diagnosis was grouped into 21 categories based on International Classification of Disease, and laboratory tests were grouped into four main categories (hemogram, biochemistry, cardiac enzyme, urine and human excrement related). Both positive and negative rules were discovered. Since the nature of the data had the dominance of negative values, higher number of negative rules with higher confidences were discovered compared to positive ones. The extracted rules were validated by emergency department experts and practitioners. It was concluded that understanding the association between patient’s diagnosis and diagnostic test requirement can improve decision-making and efficient use of resources in emergency departments. Association rules can also be used for supporting physicians to treat patients.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3