Early prediction of 30- and 14-day all-cause unplanned readmissions

Author:

Lin Chaohsin1,Pan Li-Fei2,He Zuo-Quan1,Hsu Shuofen1ORCID

Affiliation:

1. Department of Risk Management and Insurance, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

2. Department of General Affairs Administration, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

Abstract

Background An unplanned readmission is a dual metric for both the cost and quality of medical care. Methods We employed the random forest (RF) method to build a prediction model using a large dataset from patients’ electronic health records (EHRs) from a medical center in Taiwan. The discrimination abilities between the RF and regression-based models were compared using the areas under the ROC curves (AUROC). Results When compared with standardized risk prediction tools, the RF constructed using data readily available at admission had a marginally yet significantly better ability to identify high-risk readmissions within 30 and 14 days without compromising sensitivity and specificity. The most important predictor for 30-day readmissions was directly related to the representing factors of index hospitalization, whereas for 14-day readmissions the most important predictor was associated with a higher chronic illness burden. Conclusions Identifying dominant risk factors based on index admission and different readmission time intervals is crucial for healthcare planning.

Funder

National Science and Technology Council

Kaohsiung Veterans General Hospital

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The LACE index and risk factors of 14-day versus 30-day readmissions in children;International Journal for Quality in Health Care;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3