Ensemble learning based functional independence ability estimator for pediatric brain tumor survivors

Author:

Lin Pei-Hua1,Kuo Ping-Huan2ORCID

Affiliation:

1. Department of Rehabilitation, An Nan Hospital, China Medical University, Tainan, Taiwan

2. Department of Mechanical Engineering, National Chung Cheng University, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Taiwan

Abstract

A history of brain tumor strongly affects children’s cognitive abilities, performance of daily activities, quality of life, and functional outcomes. In light of the difficulties in cognition, communication, physical skills, and behavior that these patients may encounter, occupational therapists should perform a comprehensive needs-led assessment of their global functioning after recovery. Such an assessment would ensure that the patients receive adequate support and services at school, at home, and in the community. By predicting the functional activity performance of children with a history of brain tumor, clinical workers can determine the progress of their ability recovery and the optimal treatment plan. We selected several features for testing and employed common machine learning models to predict Functional Independence Measure (WeeFIM) scores. The ensemble learning models exhibited stronger predictive performance than did the individual machine learning models. The ensemble learning models effectively predicted WeeFIM scores. Machine learning models can help clinical workers predict the functional assessment scores of patients with childhood brain tumors. This study used machine learning models to predict the WeeFIM scores of patients with childhood brain tumors and to demonstrate that ensemble machine learning models are more suitable for this task than are individual machine learning models.

Funder

Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3