Machine learning-based natural language processing to extract PD-L1 expression levels from clinical notes

Author:

Lin Eric12ORCID,Zwolinski Robert1,Wu Julie Tsu-Yu34,La Jennifer1,Goryachev Sergey1,Huhmann Linden1,Yildrim Cenk1,Tuck David P15,Elbers Danne C16ORCID,Brophy Mary T15,Do Nhan V15ORCID,Fillmore Nathanael R167

Affiliation:

1. VA Boston Healthcare System, Boston, MA, USA

2. McLean Hospital, Institute for Technology in Psychiatry, Belmont, MA, USA

3. VA Palo Alto Healthcare System, Palo Alto, CA, USA

4. Stanford University School of Medicine, Stanford, CA, USA

5. Boston University School of Medicine, Boston, MA, USA

6. Harvard Medical School, Boston, MA, USA

7. Dana-Farber Cancer Institute, Boston, MA, USA

Abstract

Introduction: PD-L1 expression is used to determine oncology patients’ response to and eligibility for immunologic treatments; however, PD-L1 expression status often only exists in unstructured clinical notes, limiting ability to use it in population-level studies. Methods: We developed and evaluated a machine learning based natural language processing (NLP) tool to extract PD-L1 expression values from the nationwide Veterans Affairs electronic health record system. Results: The model demonstrated strong evaluation performance across multiple levels of label granularity. Mean precision of the overall PD-L1 positive label was 0.859 (sd, 0.039), recall 0.994 (sd, 0.013), and F1 0.921 (0.024). When a numeric PD-L1 value was identified, the mean absolute error of the value was 0.537 on a scale of 0 to 100. Conclusion: We presented an accurate NLP method for deriving PD-L1 status from clinical notes. By reducing the time and manual effort needed to review medical records, our work will enable future population-level studies in cancer immunotherapy.

Funder

VA Cooperative Studies Program

VA Boston Medical Informatics Fellowship

American Heart Association

Publisher

SAGE Publications

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3