Flutrack.org: Open-source and linked data for epidemiology

Author:

Chorianopoulos Konstantinos1,Talvis Karolos1

Affiliation:

1. Ionian University, Greece

Abstract

Epidemiology has made advances, thanks to the availability of real-time surveillance data and by leveraging the geographic analysis of incidents. There are many health information systems that visualize the symptoms of influenza-like illness on a digital map, which is suitable for end-users, but it does not afford further processing and analysis. Existing systems have emphasized the collection, analysis, and visualization of surveillance data, but they have neglected a modular and interoperable design that integrates high-resolution geo-location with real-time data. As a remedy, we have built an open-source project and we have been operating an open service that detects flu-related symptoms and shares the data in real-time with anyone who wants to built upon this system. An analysis of a small number of precisely geo-located status updates (e.g. Twitter) correlates closely with the Google Flu Trends and the Centers for Disease Control and Prevention flu-positive reports. We suggest that public health information systems should embrace an open-source approach and offer linked data, in order to facilitate the development of an ecosystem of applications and services, and in order to be transparent to the general public interest.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualization of Spatial–Temporal Epidemiological Data: A Scoping Review;Technologies;2024-02-28

2. Coronavirus Pandemic (COVID-19);Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines;2022-06-10

3. National influenza surveillance systems in five European countries: a qualitative comparative framework based on WHO guidance;BMC Public Health;2022-06-09

4. Sentiment Analysis of Covid19 Vaccines Tweets Using NLP and Machine Learning Classifiers;2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON);2022-05-26

5. Sentiment Analysis on COVID-19 Tweets;International Conference on Managing Business Through Web Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3