Building ontology-based temporal databases for data reuse: An applied example on hospital organizational structures

Author:

Khnaisser Christina1ORCID,Looten Vincent2,Lavoie Luc3,Burgun Anita4,Ethier Jean-François5

Affiliation:

1. Université de Sherbrooke, Deparment of Medecine, Sherbrooke, QC, Canada

2. Association des Centres Médicaux et Sociaux (ACMS), Suresnes, France

3. Université de Sherbrooke, Département d'informatique, Sherbrooke, QC, Canada

4. Université de Sherbrooke, Sherbrooke, QC, Canada; Université Paris Cité, Paris, France; Hôpital Européen Georges-Pompidou, Paris, France

5. Université de Sherbrooke, Department of Medecine, Sherbrooke, QC, Canada

Abstract

Keeping track of data semantics and data changes in the databases is essential to support retrospective studies and the reproducibility of longitudinal clinical analysis by preventing false conclusions from being drawn from outdated data. A knowledge model combined with a temporal model plays an essential role in organizing the data and improving query expressiveness across time and multiple institutions. This paper presents a modelling framework for temporal relational databases using an ontology to derive a shareable and interoperable data model. The framework is based on: OntoRela an ontology-driven database modelling approach and Unified Historicization Framework a temporal database modelling approach. The method was applied to hospital organizational structures to show the impact of tracking organizational changes on data quality assessment, healthcare activities and data access rights. The paper demonstrated the usefulness of an ontology to provide a formal, interoperable, and reusable definition of entities and their relationships, as well as the adequacy of the temporal database to store, trace, and query data over time.

Funder

Ministère de l’Économie et de l’Innovation – Québec

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3