AI-based epidemic and pandemic early warning systems: A systematic scoping review

Author:

El Morr Christo1ORCID,Ozdemir Deniz2ORCID,Asdaah Yasmeen1,Saab Antoine3ORCID,El-Lahib Yahya4,Sokhn Elie Salem56

Affiliation:

1. School of Health Policy and Management, York University, Toronto, ON, Canada

2. Department of Psychology, York University, Toronto, ON, Canada

3. Quality and Safety Department, Lebanese Hospital Geitaoui-UMC, Beirut, Lebanon

4. Faculty of Social Work, University of Calgary, Calgary, AB, Canada

5. Laboratory Department, Lebanese Hospital-Geitaoui University Medical Center, Beirut, Lebanon

6. Molecular testing Laboratory, Medical Laboratory Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon

Abstract

Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.

Funder

Canada’s International Development Research Centre

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3