Developing and validating a predictive model for future emergency hospital admissions

Author:

Stylianou Neophytos1ORCID,Young Jason2,Peden Carol J3,Vasilakis Christos4

Affiliation:

1. Centre for Health care Innovation and Improvement (CHI2), School of Management, University of Bath, Bath, UK; RTD-Talos, Lefkosia, Cyprus

2. Bath and North East Somerset, Swindon & Wiltshire NHS Clinical Commissioning Group, Bath, UK

3. Gehr Family Center for Health System Sciences and Innovation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

4. Centre for Health Care Innovation and Improvement (CHI2), School of Management, University of Bath, Bath, UK

Abstract

Although many emergency hospital admissions may be unavoidable, a proportion of these admissions represent a failure of the care system. The adverse consequences of avoidable emergency hospital admissions affect patients, carers, care systems and substantially increase care costs. The aim of this study was to develop and validate a risk prediction model to estimate the individual probability of emergency admission in the next 12 months within a regional population. We deterministically linked routinely collected data from secondary care with population level data, resulting in a comprehensive research dataset of 190,466 individuals. The resulting risk prediction tool is based on a logistic regression model with five independent variables. The model indicated a discrimination of area under the receiver operating characteristic curve of 0.9384 (95% CI 0.9325–0.9443). We also experimented with different probability cut-off points for identifying high risk patients and found the model’s overall prediction accuracy to be over 95% throughout. In summary, the internally validated model we developed can predict with high accuracy the individual risk of emergency admission to hospital within the next year. Its relative simplicity makes it easily implementable within a decision support tool to assist with the management of individual patients in the community.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3