Conceptual design of the dual X-ray absorptiometry health informatics prediction system for osteoporosis care

Author:

E ErjiangORCID,Carey John JORCID,Wang Tingyan,Yang Lan,Chan Wing P,Whelan Bryan,Silke Carmel,O’Sullivan Miriam,Rooney Bridie,McPartland Aoife,O’Malley Gráinne,Brennan Attracta1,Yu Ming,Dempsey Mary

Affiliation:

1. Department of Industrial Engineering, Tsinghua University, Beijing, China

Abstract

Osteoporotic fractures are a major and growing public health problem, which is strongly associated with other illnesses and multi-morbidity. Big data analytics has the potential to improve care for osteoporotic fractures and other non-communicable diseases (NCDs), reduces healthcare costs and improves healthcare decision-making for patients with multi-disorders. However, robust and comprehensive utilization of healthcare big data in osteoporosis care practice remains unsatisfactory. In this paper, we present a conceptual design of an intelligent analytics system, namely, the dual X-ray absorptiometry (DXA) health informatics prediction (HIP) system, for healthcare big data research and development. Comprising data source, extraction, transformation, loading, modelling and application, the DXA HIP system was applied in an osteoporosis healthcare context for fracture risk prediction and the investigation of multi-morbidity risk. Data was sourced from four DXA machines located in three healthcare centres in Ireland. The DXA HIP system is novel within the Irish context as it enables the study of fracture-related issues in a larger and more representative Irish population than previous studies. We propose this system is applicable to investigate other NCDs which have the potential to improve the overall quality of patient care and substantially reduce the burden and cost of all NCDs.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3