A rule-based decision support system for aiding iron deficiency management

Author:

Çelik Ertuğrul Duygu1ORCID,Toygar Önsen1,Foroutan Neda2

Affiliation:

1. Department of Computer Engineering, Engineering Faculty, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin-10, Turkey

2. Department of Computer Science, Saarland University, Saarbrücken, Saarland, Germany

Abstract

Iron is a vital mineral for the proper function of hemoglobin which is also a protein needed to transport oxygen in the blood. The lack of iron in human blood causes a range of serious health problems including “anemia.” In this article, the COntAneRS (Clinical ONTology-based Iron Deficiency‐ANEmia‐ Recommendation System) is proposed as a clinical decision support system to diagnose iron deficiency and manage its treatment. The applied methodologies and main technical contributions of this study are discussed in four aspects: (1) Iron Deficiency Domain Ontology (IDDOnt), (2) Semantic Web Rule Knowledgebase (SWRL), (3) Inference Engine, and (4) Physician Portal of the system. Experimental studies of the proposed system have been applied on a population of 200 people, consisting of real anemia patients and healthy individuals. First, a decision tree classifier is used to diagnose iron deficiency condition based on the patients’ demographic information and certain medical data, as well as recently measured hemoglobin CBC levels of the patients. To check the effectiveness of the system, the data of 50 anonymous patients randomly selected from 200 patients are entered manually in the IDDOnt and the system is then verified according to the inferencing results. After inferencing step, the recommendations related to appropriate iron drugs, daily consumption dose, drug consumption periods, and additional medical suggestions about drug interactions are provided by the system to the responsible physician through system ontology, SWRL rules, and web services. As a result of experimental studies, our system has provided very good accuracy (99.5%) and robust results in producing patient-suitable suggestions. In addition, the applicability of the system on the cases is discussed as case studies in this paper. The results reported from the applied case studies are promising in demonstrating the applicability, effectiveness, and efficiency of the proposed approach.

Publisher

SAGE Publications

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3