Application of machine learning to predict obstructive sleep apnea syndrome severity

Author:

Mencar Corrado1,Gallo Crescenzio2ORCID,Mantero Marco,Tarsia Paolo3,Carpagnano Giovanna E,Foschino Barbaro Maria P,Lacedonia Donato2

Affiliation:

1. University of Bari Aldo Moro, Italy

2. University of Foggia, Italy

3. University of Milan, Italy; IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Italy

Abstract

Introduction: Obstructive sleep apnea syndrome has become an important public health concern. Polysomnography is traditionally considered an established and effective diagnostic tool providing information on the severity of obstructive sleep apnea syndrome and the degree of sleep fragmentation. However, the numerous steps in the polysomnography test to diagnose obstructive sleep apnea syndrome are costly and time consuming. This study aimed to test the efficacy and clinical applicability of different machine learning methods based on demographic information and questionnaire data to predict obstructive sleep apnea syndrome severity. Materials and methods: We collected data about demographic characteristics, spirometry values, gas exchange (PaO2, PaCO2) and symptoms (Epworth Sleepiness Scale, snoring, etc.) of 313 patients with previous diagnosis of obstructive sleep apnea syndrome. After principal component analysis, we selected 19 variables which were used for further preprocessing and to eventually train seven types of classification models and five types of regression models to evaluate the prediction ability of obstructive sleep apnea syndrome severity, represented either by class or by apnea–hypopnea index. All models are trained with an increasing number of features and the results are validated through stratified 10-fold cross validation. Results: Comparative results show the superiority of support vector machine and random forest models for classification, while support vector machine and linear regression are better suited to predict apnea–hypopnea index. Also, a limited number of features are enough to achieve the maximum predictive accuracy. The best average classification accuracy on test sets is 44.7 percent, with the same average sensitivity (recall). In only 5.7 percent of cases, a severe obstructive sleep apnea syndrome (class 4) is misclassified as mild (class 2). Regression results show a minimum achieved root mean squared error of 22.17. Conclusion: The problem of predicting apnea–hypopnea index or severity classes for obstructive sleep apnea syndrome is very difficult when using only data collected prior to polysomnography test. The results achieved with the available data suggest the use of machine learning methods as tools for providing patients with a priority level for polysomnography test, but they still cannot be used for automated diagnosis.

Publisher

SAGE Publications

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3