Machine learning model for umbilical cord classification using combination coiling index and texture feature based on 2-D Doppler ultrasound images

Author:

Pradipta Gede A.12ORCID,Wardoyo RetantyoORCID,Musdholifah Aina3,Sanjaya I Nyoman H.4

Affiliation:

1. Doctoral Program Department of Computer Science and Electronics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

2. Department of Information Technology, Faculty Computer and Informatics, Institut Teknologi Dan Bisnis STIKOM Bali, Bali, Indonesia

3. Department of Computer Science and Electronics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

4. Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah General Hospital, Bali, Indonesia

Abstract

The umbilical cord is an organ that circulates oxygen and nutrition from mother to fetus during pregnancy. This study aims to classify the umbilical cord based on ultrasound images. The similarity of shape and coil between each class becomes a challenge. Therefore, it requires feature values that are relevant to the characteristics of these three classes. The condition of imbalanced data sets in this study is also an obstacle that causes the classifier’s performance to degrade on minority classes. Therefore, this study proposes a machine learning model capable of properly dealing with imbalanced data sets and recognizing the umbilical cord class. Furthermore, this study proposes a new feature extraction method, namely, the umbilical coiling index (UCI), which directly adopts obstetricians’ knowledge. The proposed model consists of five stages: image preprocessing, feature extraction, feature selection, oversampling data using SMOTE, and Classification. Machine learning method observations were carried out comprehensively on five based classifiers: Random Forest, KNN, Decision tree, SVM, Naïve Bayes, and Multiclassifier. The results showed that the Random forest and Multiclassifier methods provide the highest accuracy, precision, recall, and F-measure performance in imbalanced data sets.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3