Affiliation:
1. Monash University, Australia
2. University of Auckland, New Zealand
Abstract
This study uses hospital administrative data to ascertain the differences in the patient characteristics, process and outcomes of care between the Emergency Department (ED) triage categories of patients admitted from an ED presentation into a large metropolitan teaching hospital with a Stroke Care Unit. Bayesian Networks (BNs) derived from the administrative data were used to provide the descriptive models. Nearly half the patients in each stroke subtype were triaged as ‘Urgent’ (to be seen within 30 minutes). With a decrease in the urgency of triage categories, the proportion admitted within 8 hours decreased dramatically and the proportion of formal discharge increased. Notably, 45% of transient ischaemic attacks (TIAs) were categorized as ‘Semi-urgent’ (to be attended within 60 minutes), indicating an opportunity to improve emergency assessment of TIAs. The results illustrate the utility of hospital administrative data and the applicability of BNs for review of the current triage practices and subsequent impact.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献