Deep learning-based prediction of heart failure rehospitalization during 6, 12, 24-month follow-ups in patients with acute myocardial infarction

Author:

Bat-Erdene Bat-Ireedui1ORCID,Zheng Huilin1,Son Sang Hyeok1,Lee Jong Yun1ORCID

Affiliation:

1. Department of Computer Science, Chungbuk National University, Cheongju, South Korea

Abstract

Heart failure is a clinical syndrome that occurs when the heart is too weak or stiff and cannot pump enough blood that our body needs. It is one of the most expensive diseases due to frequent hospitalizations and emergency room visits. Reducing unnecessary rehospitalizations is also an important and challenging task that has the potential of saving healthcare costs, enabling discharge planning, and identifying patients at high risk. Therefore, this paper proposes a deep learning-based prediction model of heart failure rehospitalization during 6, 12, 24-month follow-ups after hospital discharge in patients with acute myocardial infarction (AMI). We used the Korea Acute Myocardial Infarction-National Institutes of Health (KAMIR-NIH) registry which included 13,104 patient records and 551 features. The proposed deep learning-based rehospitalization prediction model outperformed traditional machine learning algorithms such as logistic regression, support vector machine, AdaBoost, gradient boosting machine, and random forest. The performance of the proposed model was accuracy, the area under the curve, precision, recall, specificity, and F1 score of 99.37%, 99.90%, 96.86%, 98.61%, 99.49%, and 97.73%, respectively. This study showed the potential of a deep learning-based model for cardiology, which can be used for decision-making and medical diagnosis tool of heart failure rehospitalization in patients with AMI.

Funder

Ministry of Science and ICT, South Korea

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3