Users’ experiences of an emergency department patient admission predictive tool: A qualitative evaluation

Author:

Jessup Melanie1,Crilly Julia2,Boyle Justin3,Wallis Marianne4,Lind James2,Green David5,Fitzgerald Gerard6

Affiliation:

1. Australian Catholic University, Australia; Centre for Health Practice Innovation, Griffith Health Institute, Griffith University, Australia

2. Centre for Health Practice Innovation, Griffith Health Institute, Griffith University; Gold Coast University Hospital, Australia

3. Australian E-Health Research Centre, CSIRO, Australia

4. Centre for Health Practice Innovation, Griffith Health Institute, Griffith University; University of the Sunshine Coast, Australia

5. Gold Coast University Hospital, Australia

6. Queensland University of Technology

Abstract

Emergency department overcrowding is an increasing issue impacting patients, staff and quality of care, resulting in poor patient and system outcomes. In order to facilitate better management of emergency department resources, a patient admission predictive tool was developed and implemented. Evaluation of the tool’s accuracy and efficacy was complemented with a qualitative component that explicated the experiences of users and its impact upon their management strategies, and is the focus of this article. Semi-structured interviews were conducted with 15 pertinent users, including bed managers, after-hours managers, specialty department heads, nurse unit managers and hospital executives. Analysis realised dynamics of accuracy, facilitating communication and enabling group decision-making. Users generally welcomed the enhanced potential to predict and plan following the incorporation of the patient admission predictive tool into their daily and weekly decision-making processes. They offered astute feedback with regard to their responses when faced with issues of capacity and communication. Participants reported an growing confidence in making informed decisions in a cultural context that is continually moving from reactive to proactive. This information will inform further patient admission predictive tool development specifically and implementation processes generally.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3