Using machine learning algorithms to predict individuals’ tendency to be victim of social engineering attacks

Author:

Huseynov Farid1ORCID,Ozdenizci Kose Busra1ORCID

Affiliation:

1. Gebze Technical University

Abstract

In information security context, social engineering is defined as malicious activities caused by cybercriminals by means of human interactions. It is mainly a psychological manipulation technique which gets benefit of human error to reach private information. This study used machine learning algorithms to predict individuals’ susceptibility to be tricked by social engineering attacks. Simulated scenarios were presented to study participants, and they were asked to identify whether each scenario was a social engineering attack or not. Different kinds of attacks related to various industries were integrated to social engineering simulations. For each participant, different types of social engineering scores were calculated according to their responses. Besides simulations, questionnaires related to demographics, technology usage, and personality traits were filled out by the participants. All of these collected data were used in building predictive classification and regression machine learning models. Through regression and classification models, it was aimed to proactively predict individuals’ social engineering risk levels and classify them into different risk groups in terms of different attack types. This research revealed that it is possible to predetermine the social engineering risk levels of individuals. This important finding means that possible attacks can be prevented by raising awareness before the attack occurs. Within the scope of this study, a social engineering risk detection mobile application has also been developed to give practitioners and policy makers an idea of what kind of systems can be developed in order to determine the risk levels of individuals and then to educate them about various attacks. The ones who need to take action against social engineering attacks will get benefit from findings of this research.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu - TÜBİTAK

Publisher

SAGE Publications

Subject

Library and Information Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling social network clans: improving genealogical clan classification with SVM neural classifiers and enhanced kernels;International Journal of Information Technology;2024-09-12

2. Phonetic Feature and Pronunciation Improvement for English Learners;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

3. A comprehensive survey on social engineering-based attacks on social networks;International Journal of ADVANCED AND APPLIED SCIENCES;2024-04

4. School Bullying and Personality Traits from Elementary School to University;International Journal of Bullying Prevention;2023-06-01

5. Social Commerce and Metaverse in a New Virtual World;Advances in Marketing, Customer Relationship Management, and E-Services;2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3