Applying Modeling and Simulation to Predict Human Injury due to a Blast Attack on a Shipboard Environment

Author:

Jacobs Brigid1,Young Lee Ann2,Champion Dr. Howard3,Lawnick Mary3,Galarneau Dr. Michael4,Wing Vern4,Krebs Dr. William5

Affiliation:

1. MCR

2. Applied Research Associates

3. SimQuest

4. Naval Health Research Center

5. Office of Naval Research

Abstract

Computer models simulating blast effects on ship personnel are needed, but thus far, development of models has focused on simulating blast effects on ship structure and equipment. Thus, capability gaps exist in predicting the type and severity of injuries from surface or underwater weapon impact, estimating medical response requirements, and determining outcomes of patients. The Human Injury & Treatment (HIT) model addresses these gaps. Algorithms are utilized for scoring the type and severity of injuries predicted, using a variety of existing and developing injury models. Additional algorithms determine the post-injury level of incapacitation by evaluating how a physical impairment can impact performance of a task. A manning model simulates movement of personnel aboard the ship (Young, Allen, & Minks, 2011). It functions iteratively with the Tactical Medical Logistics (TML+) code, a medical response model predicting resource utilization and patient outcomes (Mitchell, 2004). Impact: HIT will help the Navy and commercial maritime interests anticipate medical response requirements resulting from blast attacks to a ship, and understand the impact of personnel loss on the crew’s ability to perform damage control.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Reference7 articles.

1. Modeling Dynamic Casualty Mortality Curves in the Tactical Medical Logistics (TML+) Planning Tool

2. Schittke H.J., Mohr W., Luetje H., Pfrang W.E., Freercks J., Niessen E. (1989). Proceedings from the 60th shock and vibration symposium IV: The program DYSMAS/ELC and its application on underwater shock loading of vessels. (pp.55-78).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3