Learning Drivers’ Behavior From Social Networking

Author:

Li Yueqing1,Kaneria Acyut1,Qian Chao12,Craig Brian1

Affiliation:

1. Department of Industrial Engineering, Lamar University, Beaumont, Texas 77710, USA

2. School of Business, Jiangnan University, Wuxi, Jiangsu 214122, China

Abstract

In today’s fast developing civilization, transportation plays an important part in people’s economic growth and daily activities. This study analyzes the driving behavior and accidents related to traffic accidents using Twitter tweets as a tool for text mining. Active users when encounter any traffic incidents, post instant messages on Twitter. Various analyses were performed on these tweets and was represented graphically using tableau analy-sis software and Rstudio. This method proved to be an effective and inexpensive method to study peoples’ real time approach on traffic accident throughout the world. It proved to be a strong approach towards learning traf-fic accident behaviors.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3