A Human Factors Engineering Education Perspective on Data Science, Machine Learning and Automation

Author:

Hannon Daniel1,Rantanen Esa2,Sawyer Ben3,Ptucha Raymond2,Hughes Ashley4,Darveau Katherine15,Lee John D.6

Affiliation:

1. Tufts University

2. Rochester Institute of Technology

3. University of Central Florida

4. University of Illinois

5. GE Aviation

6. University of Wisconsin-Madison

Abstract

The explosion of data science (DS) in all areas of technology coupled with the rapid growth of machine learning (ML) techniques in the last decade create novel applications in automation. Many working with DS techniques rely on the concept of “black boxes” to explain how ML works, noting that algorithms find patterns in the data that humans might not. While the mathematics are still being developed, the implications for the application of ML, specifically to questions of automation, also are being studied, but still remain poorly understood. The decisions made by ML practitioners with respect to data selection, model training and testing, data visualization, and model applications remain relatively unconstrained and have the potential to yield unexpected results at the systems level. Unfortunately, human factors engineers concerned with automation often have limited training and awareness of DS and ML applications and are unable to provide the meaningful guidance that is needed to ensure the future safety of these newly emerging automated systems. Moreover, undergraduate and graduate programs in human factors engineering (HFE) have not kept pace with these developments and future HFEs may continue to find themselves unable to contribute meaningfully to the development of automated systems based on algorithms derived from ML. In this paper, human factors engineers and educators explore some of the challenges to our understanding of automation posed by specific ML techniques and contrast this with an outline of some of the historical work in HFE that has contributed to our understanding of safe and effective automation. Examples are provided from more conventional applications using both supervised and unsupervised learning techniques, that are explored with respect to implications for algorithm performance, use in system automation, and the potential for unintended results. Implications for human factors engineering education are discussed.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Reference11 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3