A computer vision-based lifting task recognition method

Author:

Jung SeHee1,Su Bingyi1,Wang Hanwen1,Lu Lu1,Xie Ziyang1,Xu Xu1,Fitts Edward P.1

Affiliation:

1. Department of Industrial and Systems Engineering North Carolina State University

Abstract

Low-back musculoskeletal disorders (MSDs) are major cause of work-related injury among workers in manual material handling (MMH). Epidemiology studies show that excessive repetition is one of major risk factors of low-back MSDs. Thus, it is essential to monitor the frequency of lifting tasks for an ergonomics intervention. In the current field practice, safety practitioners need to manually observe workers to identify their lifting frequency, which is time consuming and labor intensive. In this study, we propose a method that can recognize lifting actions from videos using computer vision and deep neural networks. An open-source package OpenPose was first adopted to detect bony landmarks of human body in real time. Interpolation and scaling techniques were then applied to prevent missing points and offset different recording environments. Spatial and temporal kinematic features of human motion were then derived. These features were fed into long short-term memory networks for lifting action recognition. The results show that the F1-score of the lifting action recognition is 0.88. The proposed method has potential to monitor lifting frequency in an automated way and thus could lead to a more practical ergonomics intervention.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Reference32 articles.

1. International Conference on Applications and Techniques in Cyber Security and Intelligence ATCI 2018

2. A biomechanical evaluation of five lifting techniques

3. Human Arm Motion Tracking by Inertial/Magnetic Sensors Using Unscented Kalman Filter and Relative Motion Constraint

4. Bernard B. P., Putz-Anderson V. (1997). Musculoskeletal disorders and workplace factors; a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back.

5. Bureau of Labor Statistics, 2018. 2018 survey of occupational injuries & illnesses. https://www.bls.gov/iif/soii-charts2018.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3