Assessment of Two Passive Back-Support Exoskeletons in a Simulated Precision Manual Assembly Task

Author:

Madinei Saman1,Kim Sunwook1,Alemi Mohammad Mehdi2,Srinivasan Divya1,Nussbaum Maury A.1

Affiliation:

1. Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA

2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA

Abstract

Low back pain (LBP) remains the most prevalent and costly work-related disability in the United States, accounting for ~40% of annual musculoskeletal disorders (BLS, 2018) and imposing an economic burden of over $50 billion (Davis, 2012). Many intervention approaches have been explored to reduce the physical requirements of occupational tasks. Examples include training in work methods, modifying work stations, re-organizing work processes, and using mechanical aids such as cranes and power-lift tables (Chaffin et al., 1999; Lavender et al., 2013; Madinei et al., 2018). While these approaches can be effective, they can also be excessively costly or even infeasible for certain work environments (Graham et al., 2009). Industrial back-support exoskeletons (BSEs) – designed to augment the back and hip muscles – have been introduced as an alternative intervention to reduce the physical demands on the back muscles and consequently mitigate the risk of LBP (De Looze et al., 2016). However, there is limited evidence regarding the efficacy of BSEs in work scenarios that require sustained and/or non-neutral trunk bending (such as manual assembly), which are well-known LBP risk factors (e.g., Norman et al., 1998; Fathallah et al., 2008). The efficacy of two passive BSE designs (i.e., BackX™ and Laevo™) was examined by quantifying trunk extensor muscle activity during a lab-based simulation of a precision manual assembly task. Both devices incorporate a passive torque generation mechanism about the hip joint that is intended to augment the torso extensor muscles. Yet, the devices differ in specific design characteristics, such as major body anchor points for the torque generation mechanism (upper back, waist, and thigh [BackX™ AC] vs. chest, waist, and thigh [Laevo™]). Eighteen (gender-balanced) participants, with no recent musculoskeletal injuries or disorders, completed a simulated assembly task using a “grooved pegboard” (Lafayette Instruments, IN, USA) in 20 different pegboard locations. These locations were defined by four different heights (waist, knee, ankle, and below floor levels), three horizontal distances (0, 20, and 40 cm away from the feet), and three orientation angles (0°, 45°, and 90° to the right of the mid-sagittal plane). For a given pegboard location condition, participants were asked to complete the assembly task “as quickly as possible”. Muscle activity was monitored bilaterally from two trunk extensors (i.e., iliocostalis lumborum [ILL] and thoracic erector spinae [TES]) using a telemetered surface electromyography (EMG) system (TeleMyo Desktop DTS, Noraxon, AZ, USA). Note that before performing the assembly task in any of the pegboard location conditions, participants completed trials of maximum isometric voluntary contractions for those muscle groups for normalizing EMG. Outcome measures were the median level of left-side back muscle activity (LBM = mean of 50th percentile normalized EMGs [nEMGs] of left TES and ILL) and the median level of right-side back muscle activity (RBM). Overall, BackX™ use (vs. Laevo™) led to a larger reduction in median levels of back muscle activity levels (≤ 37.9% vs. ≤ 23.9% reduction), and a significant reduction in activity was observed in a larger set of conditions (15 vs. 7 conditions). Additionally, the largest reductions when using BackX™ were found at the ankle level (≤ 38% vs. no reductions for Laevo™), followed by knee level (≤ 32% vs. ≤ 24% for Laevo™), waist level (≤ 30% vs. ≤ 14% for Laevo™), and below floor level (≤ 29% vs. ≤ 10% for Laevo™). Our findings suggest that the beneficial effects of a BSE can be task-specific and that such effects may also be specific to BSE design approaches. Notably, the effects of BSE use found here can be considered practically meaningful. For context, the magnitude of median levels of bilateral low-back muscle activities ranged from ~4-18% nEMG, and using a BSE yielded reductions up to ~5% nEMG, depending upon the specific BSE and task condition. More research is warranted, though, to characterize the task specificity and generalizability of different BSE design approaches in terms of physical demands and task performance.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3