Simulate and sense force exertions during virtual patient transfer tasks

Author:

Chen Ken1,Widmayer Rebecca12,Chen Karen B.1

Affiliation:

1. Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University

2. Premier Inc.

Abstract

Virtual reality (VR) is commonplace for training, yet simulated physical activities in VR do not require trainees to engage and contract the muscle groups normally engaged in physical lifting. This paper presents a muscle activity-driven interface to elicit the sensation of forceful, physical exertions when lifting virtual objects. Users contracted and attained predefined muscle activity levels that were calibrated to user-specific muscle activity when lifting the physical counterpart. The overarching goal is to engage the appropriate muscles, and thereby encourage and elicit behaviors normally seen in the physical environment. Activities of 12 key muscles were monitored using electromyography (EMG) sensors while they performed a three-part patient lifting task in a Cave Automatic Virtual Environment. Participants reported higher task mental loads and less physical loads for the virtual lift than the physical lift. Findings suggest the potential to elicit sensation of forceful exertion via EMG feedback but needed fine-tuning to offset perceived workload.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3