Affiliation:
1. University of Missouri, Columbia, MO, USA
Abstract
This research aims to explore the prediction of student learning outcomes in Augmented Reality (AR) educational settings, focusing on engineering education, by analyzing pupil dilation and problem-solving time as key indicators. In this research, we have created an innovative AR learning platform through the incorporation of eye-tracking technology into the Microsoft HoloLens 2. This enhanced learning platform enables the collection of data on pupil dilation and problem-solving duration as students engage in AR-based learning activities. In this study, we hypothesize that pupil dilation and problem-solving time could be significant predictors of student performance in the AR learning environment. The results of our study suggest that problem-solving time may be a critical factor in predicting student learning success for materials involving procedural knowledge at low difficulty levels. Additionally, both pupil dilation and problem-solving time are predictive indicators of student learning outcomes when dealing with predominantly procedural knowledge at high difficulty levels.
Funder
Division of Information and Intelligent Systems