PROPER: Development of an Early Pediatric Intensive Care Unit Readmission Risk Prediction Tool

Author:

Kaur Harsheen1,Naessens James M.2,Hanson Andrew C.2,Fryer Karen1,Nemergut Michael E.3,Tripathi Sandeep4

Affiliation:

1. Department of Pediatric Critical Care, Mayo Clinic, Rochester, MN, USA

2. Department of Health Science Research, Mayo Clinic, Rochester, MN, USA

3. Department of Anaesthesia, Mayo Clinic, Rochester, MN, USA

4. Pediatric Critical Care, University of Illinois College of Medicine at Peoria, Peoria, IL, USA

Abstract

Objective: No risk prediction model is currently available to measure patient’s probability for readmission to the pediatric intensive care unit (PICU). This retrospective case–control study was designed to assess the applicability of an adult risk prediction score (Stability and Workload Index for Transfer [SWIFT]) and to create a pediatric version (PRediction Of PICU Early Readmissions [PROPER]). Design: Eighty-six unplanned early (<48 hours) PICU readmissions from January 07, 2007, to June 30, 2014, were compared with 170 random controls. Patient- and disease-specific data and PICU workload factors were compared across the 2 groups. Factors statistically significant on multivariate analysis were included in the creation of the risk prediction model. The SWIFT scores were calculated for cases and controls and compared for validation. Results: Readmitted patients were younger, weighed less, and were more likely to be admitted from the emergency department. There were no differences in gender, race, or admission Pediatric Index of Mortality scores. A higher proportion of patients in the readmission group had a Pediatric Cerebral Performance Category in the moderate to severe disability category. Cases and controls did not differ with respect to staff workload at discharge or discharge day of the week; there was a much higher proportion of patients on supplemental oxygen in the readmission group. Only 2 of 5 categories in the SWIFT model were significantly different, and although the median SWIFT score was significantly higher in the readmissions group, the model discriminated poorly between cases and controls (area under the curve: 0.613). A 7-category PROPER score was created based on a multiple logistic regression model. Sensitivity of this model (score ≥12) for the detection of readmission was 81% with a positive predictive value of 0.50. Conclusion: We have created a preliminary model for predicting patients at risk of early readmissions to the PICU from the hospital floor. The SWIFT score is not applicable for predicting the risk for pediatric population.

Publisher

SAGE Publications

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3