Cerebral Blood Flow Autoregulation in Sepsis for the Intensivist: Why Its Monitoring May Be the Future of Individualized Care

Author:

Goodson Carrie M.1,Rosenblatt Kathryn23,Rivera-Lara Lucia23,Nyquist Paul23,Hogue Charles W.4

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

2. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

4. Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Abstract

Cerebral blood flow (CBF) autoregulation maintains consistent blood flow across a range of blood pressures (BPs). Sepsis is a common cause of systemic hypotension and cerebral dysfunction. Guidelines for BP management in sepsis are based on historical concepts of CBF autoregulation that have now evolved with the availability of more precise technology for its measurement. In this article, we provide a narrative review of methods of monitoring CBF autoregulation, the cerebral effects of sepsis, and the current knowledge of CBF autoregulation in sepsis. Current guidelines for BP management in sepsis are based on a goal of maintaining mean arterial pressure (MAP) above the lower limit of CBF autoregulation. Bedside tools are now available to monitor CBF autoregulation continuously. These data reveal that individual BP goals determined from CBF autoregulation monitoring are more variable than previously expected. In patients undergoing cardiac surgery with cardiopulmonary bypass, for example, the lower limit of autoregulation varied between a MAP of 40 to 90 mm Hg. Studies of CBF autoregulation in sepsis suggest patients frequently manifest impaired CBF autoregulation, possibly a result of BP below the lower limit of autoregulation, particularly in early sepsis or with sepsis-associated encephalopathy. This suggests that the present consensus guidelines for BP management in sepsis may expose some patients to both cerebral hypoperfusion and cerebral hyperperfusion, potentially resulting in damage to brain parenchyma. The future use of novel techniques to study and clinically monitor CBF autoregulation could provide insight into the cerebral pathophysiology of sepsis and offer more precise treatments that may improve functional and cognitive outcomes for survivors of sepsis.

Publisher

SAGE Publications

Subject

Critical Care and Intensive Care Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3