Modelling of hazardous chemical gas building ingress and consequence analysis during a leak accident

Author:

Wu Mei1ORCID,Zhang Guang-Wei1,An Zi-Ying1,Liu Xiao-Ping1ORCID

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei, Anhui, China

Abstract

Leakage of hazardous chemical gases during storage or transport via roadways is a common type of accident that threatens human life. This study built a typical residential building model in rural areas of southern China based on Building Information Model technology. The model was then simplified and employed as a target building to simulate the hazardous gas dispersion around it after a leak accident by means of Computational Fluid Dynamic methods. A dose-response model was combined with a probit function analysis to quantitatively identify the exposure risks for different scenarios. The impacts of source location and ventilation path on the dispersion characteristics were analyzed through comparisons of indoor concentration distributions. In addition, the study also quantified the relationship between individual mortality risk and the source intensity by employing H2S as a source of toxic substances. If the source strength was increased by 2.5 times for the same ventilation path, the corresponding mortality rates can improve from 0.1 to 99%. The findings provide effective information about rapid consequence evaluation after accidental leakage of hazardous chemical gas and could be helpful in proposing effective emergency measures to minimize the exposure risk in roadside buildings.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3