Control of temperature and fume generation by cooking in a residential kitchen by ceiling radiative cooling and fume hood extraction

Author:

Li Wang123ORCID,Wang Hanqing123,Li Chengjun123,Yu Chuck Wah124

Affiliation:

1. Engineering Lab of Hunan for Building Environment Control, University of South China, Hengyang, China

2. Key Lab of Hunan for the Energy Conservation in the Prefabricated Buildings, University of South China, Hengyang, China

3. School of Resource & Environment and Safety Engineering, University of South China, Hengyang, China

4. International Society of the Built Environment (ISBE), Milton Keynes, UK

Abstract

The heat radiation in a residential kitchen was simulated by CFD (Computational-fluid-dynamics) to evaluate the cooling by a radiant cooling ceiling panel and pollution dispersion by the range hood and the air extraction system. The kitchen has a 2-hobs stove and a fume hood for removing waste heat and fumes. The simulation was validated by measurements in a domestic kitchen in a home in Changsha, China, where summer temperature is generally about 33 °C and often over 35–42°C. The simulation results show that the pollutant concentration in the kitchen during cooking was much lower than the Chinese standard criteria of GB/T18883-2002. A standard turbulence model was used, which indicated satisfactory distribution of temperature and airflow in the kitchen. The indoor airflow velocity was low. The airflow temperature when both hobs were used was slightly higher by 3–4°C than when a single hob was used. The temperature in the kitchen during cooking was about 28 °C, which was a degree lower than the living-room temperature, thus maintaining a comfortable thermal and healthy environment. The radiant cooling in the ceiling was shown to be a significant contributing factor. The ring suction type range hood has a sufficient capacity to remove the kitchen fume contaminants.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3