Daylighting design validation and optimisation of tropical school classrooms with asymmetrical bilateral opening typology

Author:

Atthaillah Atthaillah12ORCID,Mangkuto Rizki A.3ORCID,Subramaniam Sarith4ORCID,Yuliarto Brian5

Affiliation:

1. Engineering Physics Doctorate Program, Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

2. Architecture Program, Faculty of Engineering, Universitas Malikussaleh, Aceh Utara, Indonesia

3. Building Physics Research Group, Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

4. Technische Universität Kaiserslautern, Kaiserslautern, Germany

5. Advanced Functional Material Research Group, Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

Abstract

Daylighting is an essential factor in the design and operation of buildings, including schools. School buildings shall therefore be designed and constructed by considering climate variability that may affect daylighting performance. In some cases, such as in Indonesia, school classrooms are typically designed with symmetrical bilateral openings. However, recent literature suggests that such an opening typology may not necessarily lead to optimal daylight performance. This study investigated the potential of applying asymmetrical bilateral opening in tropical school classrooms by conducting validation with scale models and optimisation with climate-based daylight simulation. The window-to-wall ratio and external horizontal shading depth and elevation on opposing façades of the building model were considered input variables. Computational daylight simulation with Radiance (RAD) through the interface of Honeybee Plus (HB [+]) and optimisation using genetic algorithms (GA) were utilised to calculate annual daylight metrics (aUDI250-750lx, aUDI100-3000lx, sDA300/50% and ASE1000,250) and glare indices (DGP) under the climate of two Indonesian cities. Based on the optimisation, the recommended solutions are indeed in favour of asymmetrical opening configurations. These findings are crucial to improving the practice of designing tropical school classrooms with asymmetrical bilateral openings.

Funder

Institut Teknologi Bandung

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3