Revitalization of air using a potassium superoxide plate in hypoxic space: Performance and kinetic model under natural convection conditions

Author:

Wang Shu1,Zhang Tian1,Jin Longzhe1

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, PR China

Abstract

Potassium superoxide-based oxygen supply systems demonstrate a tremendous potential for applications associated with mine emergency rescue. In this study, the air revitalization performance of a potassium superoxide plate operating under natural convection conditions was investigated by a series of passive tests in a sealed chamber. Reaction resistance analysis based on experimental data revealed that increasing air temperature and humidity accelerates oxygen generation but reduces the system respiratory quotient as a result of the increased resistance of internal diffusion. Increasing the amount of plates or using them in combination with a carbon dioxide absorption curtain is a practical, effective method for meeting requirements of both oxygen generation rate and system respiratory quotient in underground refuge. Kinetics model that predicted the mean oxygen generation rate, carbon dioxide absorption rate, system respiratory quotient and total thermal output (Q) was also derived from experimental data in this study. Predicted results were found to be in good agreement with experimental data. The proposed model can aid in the design of air revitalization systems used in refuge stations for underground mines.

Funder

National Key Technology Research and Development Program during the 12th Five-year Plan Period

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3