Method for Evaluating the Relative Efficiency of Selected N95 Respirators and Surgical Masks to Prevent the Inhalation of Airborne Vegetative Cells by Healthcare Personnel

Author:

Davidson Craig1,Green Christopher F.2,Panlilio Adelisa L.3,Jensen Paul A.4,Stover Beth H.3,Roselle Gary5,Gibbs Shawn G.6,Scarpino Pasquale V.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio, USA

2. Science, Math and Engineering Division, University of Cincinnati Clermont College, Batavia, Ohio, USA

3. Division of Healthcare Quality Promotion, National Center for Preparedness, Detection, and Control of Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA

4. Division of Tuberculosis Elimination, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA

5. Veterans Affairs Headquarters, Cincinnati, Ohio, USA, Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA

6. Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, College of Public Health, Omaha, Nebraska, USA,

Abstract

Aerosol droplet- and airborne-transmitted diseases are an important healthcare concern. The anthrax attacks of 2001, severe acute respiratory syndrome outbreaks in 2003 which resulted in transmission to numerous healthcare personnel (HCP) and concerns about smallpox as a bioterrorist agent have contributed to heightened concern about airborne infectious agents. Respirators and surgical masks can provide respiratory protection against such airborne diseases but their efficacy needs to be assessed. This study describes a method for quantitatively assessing the relative efficiency of respiratory protective equipment (RPE) when challenged with a bioaerosol. Five surgical masks, three N95 respirators and three surgical N95 respirators were evaluated. All are commercially available and used in US healthcare settings. Bacterial aerosols of vegetative Bacillus anthracis strain Sterne 34F2 (a surrogate for pathogenic B. anthracis) were generated with a six-jet Collison nebuliser. To mimic human respiratory breathing, an automated breathing simulator (ABS) calibrated to normal tidal volume and active breathing rate (500 mL/breath and 20 breath/min, respectively) was used. Respirators were placed on manikin head-forms designed for use in cardiopulmonary resuscitation training and used in our investigation as surrogates for HCP. The method showed that a Collison nebuliser could generate monodisperse bacterial aerosol to effectively test RPE total inward leakage. Also, the AGI-30 air samplers, combined with the ABS, provided an accurate method of quantifying RPE relative efficiency. For the 11 RPE this ranged from 34% to 69% with statistically significant differences between several RPE models. We conclude that neither RPE type nor brand name was an indicator of RPE relative efficiency.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3